
13

PERFORMANCE STUDY OF TASK AND RESOURCE SECHEDULING IN
SOFTWARE PROJECT

*
I.K. Gulam Mohiddin

Abstract
Software projects scheduling plays a significant

role in software project management. Software

project management is the process of scheduling

and leading the software projects in which the

software projects are designed, executed and

managed. A software project has the capability

for testing and maintaining the software product

during the specific period of time. Software

project management is designed to address every

software projects that is essential to manage the

difficult processes of software projects. The main

aim of task scheduling is to schedule the tasks on

processors and also decrease the make span of

schedule efficiently. The task preemption is

exactly represented to provide the resource

efficiently with reducing the software time by

using software project management. Due to the

requirement for scheduling many activities and

improper task preemption cause severe threats is

the major issue. The study helps to prioritizing

the multiple projects’ activities which resulting in

minimum scheduling time. This in turn to

decreases the thread stacks and therefore

improves the optimization of memory with lesser

cost.

Keywords: Project Scheduling, Software Project

Management, Task Scheduling, and Software

Project.

Introduction
Software project scheduling is one of the most

significant scheduling parts that are mainly focused

on software project management group. With the

huge opportunity in internet, large-scale

administered software projects in manufacturing,

production and others are becoming more

extensive. The project scheduling is to illustrate the

process of constructing and detecting the

scheduling technique for software development

projects. In order to build the difficult software

systems, the several engineering tasks are required

to take place with one another to complete the

project during particular interval of time. Both the

software engineering as well as the software

management is very necessary for efficient

software project.

Software project management is defined as the

procedure of organizing, staffing, observing,

managing and leading the software project.

Software project manager is efficiently leads to

software development team for scheduling the

several project activities with minimum cost.

Scheduling of software projects involves the

resource allocation to ascertain the start and

completion periods of the comprehensive activities.

The software project manager’s work is essential to

guarantee the software project with its resource

constraints and delivers software in time. Thus the

process of software project management is a

technique of providing every activity that is

relevant to its project and parts. Also, the

management of software project is necessary to

require, since the professional software engineering

is mainly focused on organizational budget and

schedule constraints.

When the task preemption is accurately described,

the resources scheduling is organized efficiently in

which decreasing the software time and cost.

Projects scheduling is the process of scheduling the

task with shared stack and transition between the

preemptive and non-preemptive threads. An

inappropriate task preemption approach creates

severe threats that are essential to minimize the

threats by using multiple project managements.

Project management is very useful for all variety of

software projects but it is extensively employed to

manage the difficult processes of software

developments projects. During the project

management, the resources scheduling has the

ability to execute the task of software project

efficiently and effectiveness.

 Globus An International Journal of Management & IT

 A Refereed Research Journal

Vol 8 / No 2 / Jan-Jun 2017 ISSN: 0975-721X

*Lecturer, Department of Computer Science, Eritrean Institute of Technology, Asmara, Eritrea

14

This paper is organized as follows: Section II

discusses task and resource scheduling in software

project. Section III describes the existing task and

resource scheduling in software project technique,

Section IV identifies the possible comparison

between them, Section V explains the limitations as

well as the related work and Section VI concludes

the paper, research work is given as to optimizing

various projects activities which resulting in

minimum scheduling time and cost.

Literature Review

Multi Agent Optimization Algorithm (MAOA) in

[1] deployed an integrated key behavior of agent

and population-based method of swarm intelligence

to determine Resource Constrained Project

Scheduling Problem (RCPSP). Though, RCPSP

method is resulted in finding better solutions with

acceptable running time, more reasonable search

operators remained unaddressed. RCPSP technique

in [2] describes combinatorial NP-difficult issues

for implementing a number of precedence based

tasks is subjected to limited uncertain resources.

The design of Max-Min Ant System algorithm

using Hyper-Cube structure in [8] designed to

reduce the software project cost and duration. A

technique with event-based scheduler and ant

colony optimization algorithm (EBS-ACO) in [7]

allows the resource conflict and task preemption

method for optimizing resources usage.

Evolutionary Algorithms (EAs) in [6] design the

functions considered relative significant among the

cost and completion time depends on their weights.

However, less emphasis is made on runtime

analysis. RCSP technique in [11] describes the

resource consumption in construction activities.

But, the RCSP method has very large size and

complexity. Particle Swarm Optimization (PSO)

based hyper-heuristic algorithm in [7] to solve

RCPSP presented that worked an upper-level

algorithm and controlled several low-level

heuristics run on solution space. An improved

differential evolution (IDE) algorithm intended in

[15] designed to address the software project

scheduling problem (SPSP) technique. Multi

Threaded Local Search (MTLS) in [4] intended a

master thread that controlled several worker

threads, running in a parallel manner, where the

information exchange is done only when the

worker thread reached local optimum. Despite local

optima, state transition between threads did not

evolved over time.

To remove the resource contention, Dynamic Task

Aware Scheduling (DTAS) in [3] designed to run

complementary tasks such as compute-bound or

memory-bound during run time. RCPSP technique

in [10] deal with realistic like energy constraints

energy limitation, constraint demand and power

utilization. Nvidia GPU processor description in

[13] describes the intermittent errors that is

determined accurately and contains the limited

impact of well defined architecture tile. Though, it

enhances the shared memory and register usage

lead to overhead and also higher false positive rate.

A novel time planning procedure in [17] designed

to discover the feasible start times of activities and

the longest paths among start times of activities.

However, the resource optimization rate is high.

Multi-Mode Resource-Constrained Multi-Project

Scheduling Problem in [18] determined to detect a

feasible schedule when reducing the total project

delay (TPD) and total makespan (TMS). Though,

the scheduling time is high. A Time Division

Multiplexing (TDM) global scheduler and

preemptive Fixed Priority (FP) local schedulers

running multiple applications on a single platform

designed in [9]. A two-step procedure developed in

[14] where the TCT is employed with Microsoft

excel software to achieve the project deadline

considering unlimited resources. But,

computational time gets maximized. Cooperative

Coevolutionary multi-objective algorithm

(CCMOA) in [12] designed to provide the high-

quality results and efficiently solve the

optimization issues. A software project

scheduling/rescheduling method in [16] planned to

support dynamic staffing and rescheduling by using

hybrid approach based on Genetic Algorithm (GA)

and Hill Climbing (HC). Though, the performance

of project scheduling is not effective.

In this paper, in order to overcome the above

mentioned limitation, a task and resource

scheduling in software project is designed. That

aims to guarantee the scheduling multiple project

activities of several software projects with minimal

resource cost. Hence, the scheduling technique is

essential to enhance the resource optimization rate

for achieving the high performance by using

software project.

Task and Resource Scheduling in Software
Project
Project scheduling is one of the most essential

techniques for preventing the delays during the

software project. Software project is the process of

software development that is efficiently required

for testing and maintenance according to the

planned software product is attained in a certain

time interval. Software project managers are

responsible for planning and scheduling of

software project development in an efficient

manner. The process of resource scheduling is

more flexible to enables the project managers that

are essential to describe the staffing requirements

and resource managers to fulfill the overall

15

necessities. Task management has the ability to

control the task through its entire life cycle that

contains planning, testing, tracking and reporting.

In addition, the task scheduler is assists to achieve

the goals that is allowed to monitor and also

executes the scheduling tasks automatically.

The performance of task and resource scheduling in

software project is compared against with the three

existing methods including Particle Swarm

Optimization based Hyper-Heuristic (PSO-HH)

algorithm, Event-Based Scheduler and Ant Colony

Optimization (EBS-ACO) algorithm and Dynamic

Task-Aware Scheduling (DTAS) technique.

A Particle Swarm Optimization Based Hyper-
Heuristic Algorithm for the Classic Resource
Constrained Project Scheduling Problem
Particle Swarm Optimization based Hyper-

Heuristic (PSO-HH) algorithm is essential to deal

with more familiar and challenging technique to

solve the Resource Constrained Project Scheduling

Problem (RCPSP). The hyper-heuristic is designed

to control the upper-level algorithm that limits the

various low-level heuristics in which they work to

solution space. The process of solution

representation is mainly depends upon the random

keys. Also, the active schedules are very useful to

create serial scheduling generation systems that are

changed through low-level heuristics method.

The hyper-heuristic is the main part of a flexible

multi-level process which does not need to detect

how the low-level heuristics run to solution space.

But, it only requires the information about the

function and its value. It is the main attributes of

hyper-heuristic structure that make very easier to

improve the problem-independent hyper heuristic

algorithms and also share the low-level heuristics

for project scheduling problems (PSP).

Figure 1: Block Diagram of Particle Swarm
Optimization Based Hyper-Heuristic

Algorithm

Figure 1 describes the diagram of PSO Hyper-

heuristic algorithm. Initially, the PSO-HH approach

is essential to change the sequence in which the

low-level heuristics are efficiently employed to

solution space. After applying the low-level and

addressing the vector of priorities, the serial

scheduling generation method is utilized to build

the possible schedule and also compute the

effective makespan. Finally, the process of

justification is employed to implement the local

search and more feasibly to increase the resulted

makespan. In order to evaluate the functionality of

hyper-heuristic during the selected algorithmic

parameters settings that demonstrates good results

involved in the effectiveness of PSO Hyper-

heuristic algorithm. In addition, the flexibility of

hyper-heuristics approach and the high quality

solutions are described to increase the algorithm of

hyper-heuristics for project scheduling problems.

Ant Colony Optimization for Software
Project Scheduling and Staffing With an
Event-Based Scheduler
A new technique is employed for developing the

software project planning problem to be solved.

The major attributes of the method are classified

into two types such as Event-Based Scheduler

(EBS) and Ant Colony Optimization (ACO)

algorithm. Initially, the approach is essential to

establish the event-based scheduler. Next, the

process of ACO is utilized to determine more

complex software planning issues. Therefore, the

EBS-ACO technique is designed to improve the

flexible and effective model for software project

planning. Both the EBS and ACO method is

performed by using task list and an employee

allocation matrix. Consequently, both the problem

of task scheduling and employee allocation is taken

into consideration. In starting time of project, the

time when resources released from ending tasks

and time when employees join or leave the project

is considered as events by using EBS method. The

fundamental idea of EBS technique is to modify

the distribution of employees at events and also

maintain the distribution cannot modify at

nonevents.

The EBS-ACO technique is essential to implement

the modeling of resource conflict as well as task

preemption and protect the flexibility involved

during the distribution of human resource. The

EBS-ACO strategy is essential to describe the

process of ACO algorithm. Initially, the approach

initializes the parameter of ACO method. During

all iteration, ants set out to construct the plans for

problem. While the plan is used for evaluating the

problem that is mainly consists of task list and also

designed employee allocation matrix. Thus the

process of solution construction in the EBS- ACO

algorithm is classified into two steps namely

construction of task list and construction of

employee allocation matrix. After that, the

pheromone values are updated by using the global

and local updating rules. Finally, a local mutation

procedure is evaluated as the local search that

maximizes the performance of EBS- ACO

algorithm. Furthermore, the EBS- ACO algorithm

16

is more effective to handle the better plans with

very lesser costs and highly stable workload task is

compared to other technique.

Kernel Mechanisms with Dynamic Task-
Aware Scheduling to Reduce Resource
Contention in NUMA Multi-Core Systems
Many systems with multi-core processors, Non-

Uniform Memory Access (NUMA) architecture

increase the system scalability by separating the

processors and memory into multiple nodes. When

processors take effort to access the shared

resources simultaneously, a resource contention

leads to minimize the performance of system. In

order to prevent the resource contention in NUMA

multicore systems, processor cores that share

resources is essential to operate the complementary

tasks. Dynamic Task-Aware Scheduling (DTAS)

technique is designed to decrease the resource

contention during NUMA multi-core systems. It is

automatically detect the resource usage for running

tasks at run time and dynamically recognizes the

task’s categorization like either compute-bound or

memory-bound task. Also, the processors are

classified into compute-bound processors or

memory-bound processors.

Figure 2 explains the flow diagrams of task and

processor classification. The task and processor are

classified into two types including compute-bound

and memory-bound. Initially, the compute-bound

processor is responsible for executing compute-

bound tasks and thus set to higher processor

frequency to efficiently guarantee the enhanced

performance. Next, the memory-bound processor is

responsible for executing memory-bound tasks and

thus set to lower processor frequency to reduce the

utilization of power. When the task is compute-

bound, it is dispatched to compute-bound processor

or else, it is dispatched to memory-bound

processor. Based on this classification of tasks and

processors, the DTAS dispatches a compute-bound

task to run on compute-bound processor and

dispatches a memory-bound task to run on a

memory-bound processor. If the utilization of

power gets reduced, processors are required to run

at proper frequency for saving the power while

maintaining the excellent performance. Finally, a

results show that the DTAS mechanism is

performed to decreases the utilization of power by

reducing resource contention between the processor

cores.

Figure 2: Flow Diagrams of Task and
Processor Classification

The experimental evaluation using task and

resource scheduling in software project is

conducted on various factors including resource

scheduling efficiency, memory optimization rate

and scheduling time.

Comparison of Task and Resource
Scheduling in Software Project Using
Different Techniques and Suggestions
In order to compare the task and resource

scheduling in software project method using

different techniques, number of project activities is

taken to perform this experiment. Various

parameters are used for task and resource

scheduling in software project techniques.

Resource Scheduling Efficiency (RSE)
The resource scheduling efficiency is defined as the

ratio of exactly scheduling the multiple project

activities to the total number of project activities.

Resource scheduling efficiency is measured in

terms of percentage (%) and mathematically

formulated as below,

 h

When the resource scheduling efficiency is higher,

the method is said to be more efficient.

Compute-bound

Processors

Memory-

bound Task

17

Table 1 Tabulation of Resource Scheduling
Efficiency

Number of

Project

Activities

Resource Scheduling

Efficiency (%)

PSO-

HH

EBS-

ACO

DTAS

10 60 72 55

20 65 74 57

30 68 77 59

40 70 79 62

50 74 82 65

60 77 85 68

70 79 87 71

Table 1 describes the resource scheduling

efficiency versus different number of project

activities in the range of 10 to 70. The resource

scheduling efficiency comparison takes place on

existing Particle Swarm Optimization based Hyper-

Heuristic (PSO-HH) algorithm, Event-Based

Scheduler and Ant Colony Optimization (EBS-

ACO) algorithm and Dynamic Task-Aware

Scheduling (DTAS) technique.

Figure 3: Measurement of Resource
Scheduling Efficiency

Figure 3 measures the resource scheduling

efficiency of existing techniques. Resource

scheduling efficiency of Event-Based Scheduler

and Ant Colony Optimization (EBS-ACO)

algorithm is comparatively higher than that of

Particle Swarm Optimization based Hyper-

Heuristic (PSO-HH) and Dynamic Task-Aware

Scheduling (DTAS) methods. Research in Event-

Based Scheduler and Ant Colony Optimization

(EBS-ACO) algorithm has 22% higher resource

scheduling efficiency than Dynamic Task-Aware

Scheduling (DTAS) technique and 11% higher

resource scheduling efficiency than Particle Swarm

Optimization based Hyper-Heuristic (PSO-HH)

algorithm.

Memory Optimization Rate
The memory optimization rate is measured as the

difference between the total number of memory

used to the unused memory in project activities.

Memory optimization rate is measured in terms of

percentage (%) and mathematically formulated as

below,

When the memory optimization rate is higher, the

method is said to be more efficient.

Table 2 Tabulation of Memory Optimization
Rate

Number of

Project

Activities

Memory Optimization Rate

(%)

PSO-

HH

EBS-

ACO

DTAS

10 48 41 57

20 50 44 59

30 53 46 62

40 54 49 65

50 56 51 68

60 59 54 70

70 62 56 72

Table 2 describes the memory optimization rate

versus different number of project activities in the

range of 10 to 70. The memory optimization rate

comparison takes place on existing Particle Swarm

Optimization based Hyper-Heuristic (PSO-HH)

algorithm, Event-Based Scheduler and Ant Colony

Optimization (EBS-ACO) algorithm and Dynamic

Task-Aware Scheduling (DTAS) technique.

Figure 4: Measurement of Memory

Optimization Rate

18

Figure 4 measures the memory optimization rate of

existing techniques. Memory optimization rate of

Dynamic Task-Aware Scheduling (DTAS) method

is comparatively higher than that of Particle Swarm

Optimization based Hyper-Heuristic (PSO-HH)

and Event-Based Scheduler and Ant Colony

Optimization (EBS-ACO) algorithm. Research in

Dynamic Task-Aware Scheduling (DTAS)

technique consumes 16% improved memory

optimization than Particle Swarm Optimization

based Hyper-Heuristic (PSO-HH) algorithm and

25% improved memory optimization rate than

Event-Based Scheduler and Ant Colony

Optimization (EBS-ACO) algorithm.

Scheduling Time
Scheduling time is defined as the difference

between ending time and starting time required for

scheduling the software projects. Scheduling time

is measured in terms of milliseconds (ms) and

mathematically formulated as below,

When the scheduling time is lower, the method is

said to be more efficient.

Table 3 Tabulation of Scheduling Time

Number of

Project

Activities

Scheduling Time (ms)

PSO-

HH

EBS-

ACO

DTAS

10 34 50 42

20 37 52 45

30 39 55 48

40 42 58 50

50 45 61 53

60 48 65 58

70 53 70 62

Table 3 describes the scheduling time rate versus

different number of project activities in the range of

10 to 70. The scheduling time comparison takes

place on existing Particle Swarm Optimization

based Hyper-Heuristic (PSO-HH) algorithm,

Event-Based Scheduler and Ant Colony

Optimization (EBS-ACO) algorithm and Dynamic

Task-Aware Scheduling (DTAS) technique.

Figure 5: Measurement of Scheduling Time

Figure 5 measures the scheduling time of existing

techniques. Scheduling time of Particle Swarm

Optimization based Hyper-Heuristic (PSO-HH)

algorithm is comparatively lesser than that of

Dynamic Task-Aware Scheduling (DTAS)

technique and Event-Based Scheduler and Ant

Colony Optimization (EBS-ACO) algorithm.

Research in Particle Swarm Optimization based

Hyper-Heuristic (PSO-HH) algorithm contains

39% lesser scheduling time than Event-Based

Scheduler and Ant Colony Optimization (EBS-

ACO) algorithm and 20% lesser scheduling time

than Dynamic Task-Aware Scheduling (DTAS)

approach.

Discussion and Limitation of Task and
Resource Scheduling in Software Project
Using Different Techniques
In Dynamic Task-Aware Scheduling (DTAS)

approach, a user does not contains the sufficient

knowledge about the multi-core processor

topology. Scheduling of multiple tasks is not

ensured by using DTAS technique. The problem of

choosing most appropriate method for migrating

and reducing the superfluous task and page

migration are not investigated. Also, the cost of

migrate the task with its allocated memory is

greater and performance of the DTAS system is

decreased.

In Event-Based Scheduler and Ant Colony

Optimization (EBS-ACO) approach, the

uncertainty treatment is involved in software

project planning model that cause very complicated

and challenging issues. The employee experience

and training model creates more extensive problem

is not considered by using EBS-ACO algorithm.

During the EBS technique, the comprehensive

model complex event remained unaddressed.

Particle Swarm Optimization based Hyper-

Heuristic (PSO-HH) explains the enhanced

scheduling time is need if the size of problem gets

enhanced, it means that they difficult to solve

larger scale issues.

19

Future Direction
The future direction of task and resource

scheduling in software project can be employed to

scheduling the several projects’ activities which

resulting in smallest cost. In addition, to increases

the resource optimization while reducing the

threads stacks during multiple software project.

Conclusion

The comparison of different techniques for task and

resource scheduling in software project technique

is carried out. Scheduling of multiple tasks is not

guarantee and it does not contain the sufficient

information about the multi-core processor system

by using DTAS technique. When the problem size

gets improved, the PSO-HH approach is described

to require maximum scheduling time in which the

larger scale problems are very hard to determine.

Then the cost of migrate the task is improved and

performance of the DTAS system gets minimized.

During the proper planning through EBS approach,

the prioritization of projects is remains

unaddressed. Also, the improper task preemption

model is designed to cause severe threats during

the multiple software project scheduling. Finally,

from the result, the research work can decrease the

thread stacks and scheduling the multiple projects’

activities which resulting in minimum cost. That

helps to improve the resource scheduling

efficiency, memory optimization rate and reducing

the scheduling time involved in the analysis of

software projects with better efficient.

References
1. Xiao-long Zheng and Ling Wang (2015), “A

multi-agent optimization algorithm for resource

constrained project scheduling problem”,

ELSEVIER: Expert Systems with Applications,

Volume 42, Issue 15, Pages 6039-6049.

2. Margarita Knyazeva, Alexander Bozhenyuk,

and Igor Rozenberg (2015), “Resource-

constrained project scheduling approach under

fuzzy conditions”, ELSEVIER: Procedia

Computer Science, Volume 28, Pages 56-64.

3. Mei-Ling Chiang, Chieh-Jui Yang and Shu-Wei

Tu (2016), “Kernel mechanisms with dynamic

task-aware scheduling to reduce resource

contention in NUMA multi-core systems”,

ELSEVIER: The Journal of Systems and

Software, Volume 121, Pages 72-87.

4. Martin Josef Geiger (2016), “A multi-threaded

local search algorithm and computer

implementation for the multi-mode, resource-

constrained multi-project scheduling”,

ELSEVIER: European Journal of Operational

Research.

5. Leandro L. Minku, Dirk Sudholt, and Xin Yao

(2014), “Improved Evolutionary Algorithm

Design for the Project Scheduling Problem

Based on Runtime Analysis”, IEEE Transaction

on Software Engineering, Volume 40, Issue 1,

Pages 83-102.

6. Wei-Neng Chen and Jun Zhang (2013), “Ant

Colony Optimization for Software Project

Scheduling and Staffing with an Event-Based

Scheduler”, IEEE Transaction on Software

Engineering, Volume 39, Issue 1, Pages 1-17.

7. Georgios Koulinas, Lazaros Kotsikas and

Konstantinos Anagnostopoulos (2014), “A

particle swarm optimization based hyper-

heuristic algorithm for the classic resource

constrained project scheduling problem”,

ELSEVIER: Information Sciences, Volume

277, Pages: 680-693.

8. Broderick Crawford, Franklin Johnson, Ricardo

Soto, Eric Monfroy and Fernando Paredes

(2014), “A Max-Min Ant System algorithm to

solve the Software Projects Scheduling

Problem”, Expert Systems with Applications,

Volume: 41, Issue: 15, Pages: 6634-6645.

9. Laura Carnevali, Alessandro Pinzuti and Enrico

Vicario (2013), “Compositional Verification for

Hierarchical Scheduling of Real-Time

Systems”, IEEE Transaction on Software

Engineering, Vol 39, Issue 5, Pages: 638-657.

10. Hironori Okubo, Toshiyuki Miyamoto, Satoshi

Yoshida, Kazuyuki Mori, Shoichi Kitamura and

Yoshio Izui (2015), “Project Scheduling under

Partially Renewable Resources and Resource

Consumption during Setup Operations”

,Computer and Industrial Engineering, Volume

83, Pages 91-99.

11. Sofia Kaiafa and Athanasios P. Chassiakos

(2015), “A genetic algorithm for optimal

resource-driven project scheduling”,

ELSEVIER: Procedia Engineering, Volume

123, Pages 260-267.

12. Jian Xiong, Roel Leus, Zhenyu Yang, Hussein

A. Abbass (2015), “Evolutionary Multi-

Objective Resource Allocation and Scheduling

in the Chinese Navigation Satellite System

Project”, European Journal of Operational

Research, Volume 251, Pages 662-675.

13. David Defour and Eric Petit (2016), “A

software scheduling solution to avoid corrupted

units on GPUs”, ELSEVIER: Journal of Parallel

and Distributed Computing, Volume 90-91,

Pages 1-8.

14. Sanjay Tiwari, Sparsh Johari (2015), “Project

Scheduling by Integration of Time Cost Trade-

off and Constrained Resource Scheduling”,

Journal of Institution of Engineers (India):

Series A, Volume 96, Issue 1, Pages 37-46.

15.C. Biju, T. Aruldoss Albert Victoire and

Kumaresan Mohanasundaram (2015), “An

Improved Differential Evolution Solution for

Software Project Scheduling Problem”,

Hindawi Publishing Corporation, the Scientific

World Journal, Article ID 232193, Pages 1-9.

20

16. Yujia Ge, Bin Xu (2015), “Dynamic Staffing

and Rescheduling in Software Project

Management: A Hybrid Approach”, PLoS

ONE, Volume 11, Issue 6, Pages 1-28.

17. Stefan Kreter, Julia Rieck, Jürgen Zimmermann

(2016), “Models and solution procedures for the

resource-constrained project scheduling

problem with general temporal constraints and

calendars”, Elsevier: European Journal of

Operational Research, Volume 251, Issue 2,

Pages 387-403.

18. Tony Wauters, Joris Kinable, Pieter Smet, Wim

Vancroonenburg, Greet Vanden Berghe, Jannes

Verstichel (2016), “The Multi-Mode Resource-

Constrained Multi-Project Scheduling

Problem”, Journal of Scheduling, Springer,

Volume 19, Issue 3, Pages 271-283.

